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Abstract. The Electric Network Frequency (ENF) Criterion is a recently developed forensic technique 
for determining the time of recording of digital audio recordings, by matching the ENF pattern from a 
questioned recording with an ENF pattern database. In this paper we discuss its inherent limitations in 
the case of short – i.e., less than 10 minutes in duration – digital audio recordings. We also present a 
matching procedure based on the correlation coefficient, as a more robust alternative to squared error 
matching.
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1   Introduction

Electric  networks  operate  at  their  own  specific  frequency:  the  Electric  Network  Frequency  (ENF)1. 
However, due to unbalances in production and consumption of electrical energy, the ENF is known to 
fluctuate slightly over time rather than being stuck to its exact set point (figure 1). The fluctuation pattern is 
the same throughout the entire network [2] [3].

Digital recording equipment – both mains and battery powered – can pick up the ENF2, which ends up as 
an extra frequency component in the recorded audio file [2] [3] [4]. By band pass filtering the audio signal, 
the ENF can be isolated and its pattern can be retrieved. Under the assumption that the ENF fluctuations are 
random, this effectively puts a time-stamp on the audio recording: the ENF pattern is unique for the time at 
which the recording was made.

The ENF criterion

One of the challenges in authenticating digital audio evidence is to gain insight into its time of 
recording [5]. A technique known as the  ENF criterion [2] uses the aforementioned ENF fluctuation to 
achieve this3. By comparing the recorded ENF pattern to a database ENF pattern from the same electric 
network, it is possible to: 

1) verify (or falsify) a questioned time of recording, or 
2) determine an unknown time of recording. 

A visual comparison of the recorded and database ENF patterns is often adequate for the first case, while an 
(automated)  search  routine  is  necessary  for  the  latter,  to  locate  the best  match  between recorded  and 
database pattern4. 

1  The main part of continental Europe is served by one large electric network, controlled by the UCTE [1]. Its ENF is 
set at 50 Hz.

2  Claims are that recording equipment’s microphones are sensitive to the power socket signal (when mains powered) 
and the electromagnetic fields emanating from nearby power lines (when battery powered). A thorough investigation of 
recording equipment for which these claims hold is, however, lacking.

3  See [2] for other applications of the ENF criterion.
4  In this paper, we focus on using the ENF criterion for determining an unknown time of recording.
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Paper outline

Up until now, the ENF criterion has mostly been used with long recordings – i.e., approximately one hour 
in  duration  [2]  [3]  [4].  However,  the  amount  of  digital  audio  evidence  (often  accompanied  by  video 
footage) of short duration – i.e., ten minutes or less – is increasingly prominent with the advent of audio 
and video recording capabilities in consumer products (e.g., cell phones and digital cameras).

In the second half of this paper (sections 4 and 5) we will discuss the limitations of using the ENF criterion 
with short recordings, and show examples of erroneous determination of the time of recording when using a 
minimum squared error-based matching procedure. We present a maximum correlation coefficient-based 
matching procedure as a more robust alternative.

In the first half (sections 2 and 3), we will describe our means of building an ENF pattern database and 
extracting the ENF pattern from a digital audio recording.

2   ENF pattern database

Since the ENF is the frequency at which voltage levels in an electric network oscillate, it is possible to 
obtain the ENF pattern by analyzing the voltage level signal, e.g., from a power socket. In our setup, we fed 
this signal – in attenuated form – to a PC sound card that was set to a sampling frequency of 8000 Hz. The 
sampled signal [ ]x n , with the index n starting at 1, can be modeled as:

  (1)

where  ( )V t  denotes  the  voltage  level  at  time  t ,  k  is  a  factor  representing  the  attenuation,  sT  the 

sampling period (= 1.25∙10-4 s) and 1t  the time of the first sample.

We used the method of zero crossings, mentioned by Grigoras [2], for analysis of [ ]x n . The idea is to treat 
the signal as sinusoidal, although this is not strictly true since its frequency – the ENF – varies slightly over 

  

F i g  1  :  E N F  f l u c t u a t i o n  o v e r  t i m e .   
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time. For a sinusoidal signal, the time τ  between two consecutive zero crossings equals half the oscillation 
period, so that its inverse equals twice the oscillation frequency f :

1
2

f
τ

=                  (2)

We determined the times of zero crossings by linear interpolation between samples  [ ]x k  and  [ 1]x k +  
that differ in sign, and calculated the difference between two consecutive times of zero crossings to obtain 
values for τ . The corresponding values for f  were calculated using (2) and averaged for every second of 
signal. This finally results in a series of frequency values – i.e., the ENF pattern – with a time resolution of 
1 second (figure 2a). For visual clarity, ENF patterns are often depicted as continuous (figure 2b).

3. ENF pattern extraction from digital audio recording

We have adopted the method presented by Cooper [4] for extracting the ENF pattern from a digital audio 
recording.  We  shall  cover  this  method  briefly  here,  since  Cooper’s  paper  offers  an  excellent  and 
comprehensive description. 
The basic steps are:

• Signal decimation – Many digital audio recordings are recorded at high sampling frequencies – 
e.g.,  44100  Hz.  To  detect  the  ENF,  which  is  approximately  50  Hz,  much  lower  sampling 
frequencies are allowed. The audio file is  thus decimated to a sampling frequency of 300 Hz, 
which significantly reduces computational time.

• Band pass filtering – The frequencies of interest are around 50 Hz, so the decimated audio file is 
digitally band pass filtered from 49.5 Hz to 50.5 Hz to isolate the ENF.

• Short Time Fourier Transform (STFT) – In discrete time STFT analysis, a signal is divided into J  
partly overlapping frames (figure 3) for which, after windowing and zero-padding, the frequency 
spectrum  is  calculated  via  a  Discrete  Fourier  Transform  (DFT).  The  jump  H  (in  samples) 
between frames determines the time resolution of the final ENF pattern,  while  the amount of 

overlap HM −  affects its smoothness. In our specific case, we have chosen 300=H  so that the 
extracted ENF pattern time resolution equals that of the database – i.e., 1 second.  Each frame was 
windowed with a rectangular window and zero-padded by a factor of 4.

• Peak  frequency  estimation –  For  each  frequency  spectrum5,  the  frequency  with  maximum 
amplitude is estimated. As it is unlikely that this ‘peak frequency’ coincides exactly with a DFT 

5  Actually, we used the log power spectrum, defined as [ ] 2
10log X f , where [ ]X f  is the frequency spectrum.

Fig.2 a) ENF pattern as a series of ENF values b) Continuous ENF pattern, obtained by interpolating ENF values

a) b)



frequency bin, quadratic interpolation around the bin with maximum amplitude is performed. The 
estimated peak frequency is stored as the ENF value for the corresponding frame, so that we end 
up with an extracted ENF pattern of J ENF values.

4 Matching by minimum squared error

Calculating the squared difference (‘error’) between two vectors is a common approach in determining 
their equivalence: the smaller the squared error, the more both vectors are alike. The squared error E  for 
two length L  vectors x  and y  is defined as:
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When determining the time of recording using the ENF criterion, we have in general one longer vector (the 
database ENF pattern  d ) and one shorter vector (the recorded ENF pattern  r ). The approach is then to 
calculate a vector e  of squared error values, according to:
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in which R  is the length of the recorded ENF pattern, while the index k  runs from 1 to 1+− RD ; D  
being the length of the database ENF pattern. The minimum value in e  determines the location of the best 
match between recorded and database pattern, and hence the time of recording.

Ideally,  the  recorded  ENF  pattern  and  its  corresponding  database  pattern  are  exactly  equal  and  the 
minimum error value would be zero. In practice, however, this is not the case. The reliability of the ENF 
criterion in determining the right time of recording is therefore limited by the occurrence of similar patterns 
within the database itself – i.e., ENF patterns with squared errors in the same range as ‘typical’ squared 
errors between recorded and corresponding database ENF pattern.

Fig. 3 Division of a signal of length N into J partly overlapping frames 



Database analysis

In an experiment, we took roughly 1.5 years of ENF data6 and calculated the (root mean) squared error7 

between two randomly picked, non-overlapping pieces of 600 ENF values ( =̂  10 minutes). By repeating 
this one million times, we were able to picture the approximate distribution of root mean squared (rms) 
errors between ENF patterns of length 600 within the database (figure 4). Similar experiments were run for 

patterns of 60, 120, 240 and 420 ENF values.
The most interesting part of the histogram in figure 4 is near zero: the smallest (observed) rms error within 
the database ENF pattern. For length 600, we found this smallest rms error to be about 0.0040 Hz. 

We thus conclude that the minimum rms error between a recorded ENF pattern of length 600 and a (large) 
database should be ‘well below’ 0.0040 Hz for a reliable determination of the time of recording.

Table 1 lists the observed smallest rms errors for all experiments. As can be expected, the error increases 
for longer ENF patterns: the longer a pattern, the less likely it will have a similar counterpart over its whole 
length within the database8.

6  Collected  as  described  in  section  2,  at  the  Netherlands  Forensic  Institute  (The  Hague,  The  Netherlands)  from 
September 2005 until February 2007. ENF values were stored minute-by-minute in plain text files (i.e., 60 values per 
file).

7  Following  the  notation  of  equation  (3),  the  root  mean  squared  error  rmsE  is  defined  as 
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.  Conclusions  are  independent  of  a  choice  for  E  or  rmsE  as  the  dissimilarity 

measure.
8  It is therefore that the ENF criterion works well for audio recordings of long duration (as confirmed by some of our 

experiments  not mentioned here).  In  this  case,  the  rms error  between recorded and corresponding database  ENF 
pattern is almost certainly much smaller than those found within the database itself.

Fig 9 : Normalized histogram of squared errors between database pieces, 600 ENF values in length 



Table 1 : Smallest observed rms errors within 1.5 years of ENF database

ENF pattern length Smallest observed rms error [Hz]
60 0.0007
120 0.0015
240 0.0020
420 0.0035
600 0.0040

Test recordings

For a second experiment, we took an “American Audio Pocket Record” portable digital audio recorder and 
set it up to be mains powered. We made a total of 70 recordings with durations of 60, 120, 240, 420 and 
600 seconds (i.e., 14 recordings for each duration). The exact times of recording were known and the audio 
files – sampled at 44,1 kHz – were stored in lossless WAV format.

The  ENF pattern  from each  recording,  extracted  as  described  in  section  3,  was  compared  to  a  small 
database consisting of two weeks of ENF data, including the period of recording. Results are summarized 
in table 2.

Table 2: Test recording results for minimum root-mean-squared error matching

Recording duration Correct  time  estimate 
for…

Minimum  rms  error  ranging 
from…

60 s 0 out of 14 recordings 0.0008 Hz to 0.0028 Hz
120 s 0 out of 14 recordings 0.0018 Hz to 0.0037 Hz
240 s 2 out of 14 recordings 0.0033 Hz to 0.0049 Hz
420 s 10 out of 14 recordings 0.0045 Hz to 0.0055 Hz
600 s 14 out of 14 recordings 0.0045 Hz to 0.0055 Hz

It is seen that the ENF criterion failed in correctly estimating the time of recording for 44 out of the 70 
recordings.  Moreover,  the  found minimum rms  errors  are  all  above  the  values  mentioned  in  table  1. 
Comparison to a larger database could thus have resulted in even less satisfying results.

Matching by maximum correlation coefficient

Figure 5 shows a main reason for the failure of the ENF criterion: our recorded ENF patterns have a slight 
offset compared to the database pattern – a phenomenon also noted by Kajstura et al [3]. In general, this 
cannot be known beforehand and thus the matching procedure should be robust to this type of behavior.

We propose matching based on equivalence of shape, by using the correlation coefficient. Following the 
notation of equation (3), the correlation coefficient ρ  between two vectors is defined as: 
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where  the  horizontal  bars  and  sigmas  denote  the  averages  and  the  standard  deviations  of  the  vectors 
respectively.  ρ  can run from -1 to +1; the closer the value is to +1, the more both vectors are alike in 
shape. When comparing a recorded ENF pattern to a database, we thus search for the maximum correlation 
coefficient between recorded and database pattern.

Database analysis

As with  minimum squared  error  matching,  the  reliability  of  a  maximum correlation  coefficient-based 
matching procedure will be limited by high correlations within the database itself. We have repeated the 
first experiment described in the preceding section, this time calculating correlation coefficients instead of 
rms errors. Here, we are interested in the largest observed values, which are listed in table 39.

Table 3: Largest observed correlation coefficients within 1.5 years of ENF database

ENF pattern length Largest observed correlation coefficient

60 0. 9980
120 0.99
240 0.9870
420 0.9820
600 0.9850

Test recordings

Matching the same 70 test recordings with the same database by a maximum correlation coefficient search, 
yielded the results mentioned in table 4. Correct time estimation is significantly improved, with only 3 
failures out of 70. Also, from duration of 240 seconds onwards, the maximum correlation coefficients all lie 
above the values mentioned in table 3. This suggests that even comparisons to a larger database would have 
resulted in correct time estimates.

Table 4: Test recording results for maximum correlation coefficient matching
Recording duration Correct time estimate for… Maximum  corr.  coeff.  ranging 

from…
60 s 12 out of 14 recordings 0.9758 to 0.9989
120 s 13 out of 14 recordings 0.9572 to 0.9980
240 s 14 out of 14 recordings 0.9893 to 0.9989
420 s 14 out of 14 recordings 0.9910 to 0.9992
600 s 14 out of 14 recordings 0.9945 to 0.9993

9  The higher value for length 600 compared to length 420 is probably due to using ‘only’ one million random pairs of 
database pattern: the experiment for length 600 just happened to come across a better matching pattern than the one for 
length 420.

Fig 5 : Recorded ENF patterns lie consistently below the corresponding database patterna) Example of a 
recording 240 s in duration b) Example of a recording 420 s in duration

a) b)



6. Conclusion

We have shown that the reliability of the ENF criterion is inherently limited by similarities within the ENF 
pattern database to which the recording is compared. The possible presence of a frequency offset further 
increases the danger of erroneous determination of the time of recording – especially for recordings shorter 
than 10 minutes in duration in combination with a minimum squared error-based matching procedure. We 
have shown improvements by using a maximum correlation coefficient-based matching procedure.
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