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Abstract 

It is investigated how implementing the Likelihood Ratio (LR) framework works out in 

the case of camera identification based on image sensor specific noise patterns. Two 

typical case scenarios are considered, one with images of low quality, the other with 

images of high quality. In both cases, it is possible to obtain statistical distributions 

having a good fit with the reference data both for ‘matching’ and for ‘non-matching’ 

comparisons, and LRs are determined. It turns out that if the reference data is well 

separated, in the case of ‘matching’ images/cameras, the statistical fit of the distribution 

for ‘non-matches’ is constantly evaluated in a range where there is a lack of reference 

data. Because of this extrapolation issue, the LRs that emerge are not reliable. This is not 

a problem that is unique to camera identification: if the informative value of any forensic 

comparison is high the problem emerges. An alternative approach is presented which 

consists of choosing a threshold value separating ‘matches’ from ‘non-matches’ and 
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quantifying the strength of evidence of being larger/smaller than this value. If sample 

sizes of reference data increase LR results will increase as well, and it is shown that this 

approach is stable. 
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Introduction 

In digital forensics the question may arise which particular camera was used to make a 

certain photograph, e.g. in child pornography casework where an accused is suspected of 

producing photographs in addition to possessing them. Although photographs often 

contain EXIF (EXchangeable Image Format) metadata, these often do not list identifying 

camera characteristics such as serial numbers. Instead, often only classifying 

characteristics such as brand and model name of the camera are available. An additional 

problem is that the metadata may easily be removed or changed, either knowingly or 

unknowingly. Instead of looking at the metadata, one can also look at identifying 

characteristics present directly in the image due to small deviations in the image sensor 

itself. These small deviations in the image sensor mostly arise from the pixels in the 

image sensor having non-uniform sizes. That is, some pixels have slightly larger or 

smaller areas. These pixels capture more or less light, even when all pixels have the same 

illumination. This phenomenon is called Photo Response Non-Uniformity (PRNU) 2, and 

is present in all image sensors. This noise-like pattern is, as far as presently known, stable 

in time, and can be used as an identifying characteristic. Hence, camera identification 

                                                
2 Lukas, J., Fridrich, J., Goljan, M. (2005) Determining Digital Image Origin Using Sensor 
Imperfections. Proceedings of SPIE Electronic Imaging San Jose, CA, January 16-20, 249-260. 



comes down to verifying whether the PRNU pattern from a questioned image 

corresponds to the PRNU pattern from reference images from a camera. Extraction of 

PRNU patterns can be done effectively and efficiently with state of the art methods. The 

topic of the current paper will be the assessment of the value of the evidence of eventual 

similarity of PRNU patterns. 

 Assessing the similarity between two sources, i.e. individualizing the sources, is 

classically approached by using a verbal scale (e.g. ‘strong support’ for a certain 

hypothesis). This scale may be based on estimations of probabilities or on thresholds set 

by the expert. It is clear that both approaches are to a certain extent subjective: it likely 

depends on the amount of experience of the investigator, and may vary from investigator 

to investigator. In forensics, a framework gaining popularity to assess the value of the 

evidence is the Likelihood Ratio framework under a Bayesian reasoning approach, from 

here on: ‘LR framework’. The goal of the LR framework is to accurately assess the value 

of evidence in the light of clearly defined opposing hypotheses, and not to comment on 

the probability of traces being from a common source, which is considered principally 

impossible. Furthermore, it should harmonize the value of the evidence and ease the 

interpretation of the evidence in different disciplines. The LR framework is successfully 

used for the interpretation of matching DNA profiles, and there is a growing number of 

publications on the implementation of the framework in fields where comparison of 

traces takes place, e.g. for comparison of fingerprints, 3,4,5 glass particles,6 body heights,7 
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speech fragments,8 etcetera. In9 the same is done for PRNU based camera identification, 

where the focus is on the measurement uncertainty of the strength of evidence. The 

current paper focuses on the same subject, but instead of the latter, we investigate the 

general problems that are encountered when interpretation of results is performed in the 

LR framework. 

 The paper starts with a description of the LR framework, the PRNU method, the 

material used and the way in which the data analysis takes place. In two (fictive) case 

examples, namely for a mobile phone camera and a good quality camera, it is described 

what the results of the LR approach are. The paper ends with a discussion of the results. 

 

Methods and materials 

The LR framework 

In the LR framework10,11 a distinction is made between competing hypotheses Hp and Hd, 

evidence E, and background information I in order to make an analysis of the evidential 

value of E for either of the hypotheses (given I). Instead of looking for the probability 

that either of two (or more) hypotheses hold given the evidence, the probability of 

observing this evidence is evaluated given the hypotheses. It is considered the task of the 
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expert to evaluate the ratio of the two, which is called Likelihood Ratio (LR). It is left to 

the juror/judge to use the LR to update the prior odds of the hypotheses. In a formula this 

is presented as the so-called Bayes rule: 
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In the formula (*), Pr(A) stands for the probability of any event A, whereas Pr(A|B) 

expresses the probability of any event A given any event B. If the evidence consists of 

continuous readings, the probabilities in the LR formula are substituted by probability 

densities. 

 The formula (*) expresses that the posterior odds (left side of the formula) is a 

product of the prior odds (first term on the right side) and the LR (second term on the 

right side). The LR conveys the relative support of the evidence for Hp versus Hd. In the 

LR framework, estimation of the prior odds is considered to be the task of the judge, 

whereas calculating the LR is the task of the forensic expert. The prior odds are the odds 

in favor of Hp, without taking the evidence into account. When the evidence is taken into 

account, the LR is obtained. By multiplying the prior odds with the LR, the posterior 

odds are obtained. The judge considers the posterior odds when making his decision. 

Combination of evidence may be achieved by multiplying LRs for separate pieces of 

evidence, given that they are (conditionally) independent. 

 

The PRNU method 



We describe the PRNU method and how the LR framework is applied for comparison 

based on PRNU patterns. 

 As put forth in the Introduction, the PRNU pattern is a pattern present in all image 

sensors mainly as a result of non-uniform sizes of individual pixels. When the image 

sensor is illuminated uniformly, some pixels will systematically capture slightly more 

(less) light, resulting in higher (lower) outputs. The word 'systematically' is important 

here. A pixel in a perfect image sensor (without any non-uniformity) will still exhibit 

fluctuations (shot noise) in its output when the exact same scene is photographed, due to 

the statistical nature of light12. However, averaging multiple images will remove these 

fluctuations. Opposite to this, systematic deviations (such as originating from the PRNU) 

will remain, even after averaging multiple images. Hence, the output of a non-ideal image 

sensor contains a systematic deviation (PRNU component) and a random component 

(photon shot noise). 

 In order to use the PRNU pattern as a means of identifying the source camera, we 

first need to extract this pattern P from the image. In essence, this is accomplished by 

subtracting a denoised version F(I) of the input image I from the input image: P=I-F(I). 

The filtered image F(I) is a de-noised version of the original image, an approximation of 

how the image I would have looked if the image sensor would have been perfect, and no 

noise was present. 

 Several different filters have been proposed in the literature. In 13, the image is 

transferred to the wavelet domain and the resulting wavelet-coefficients are denoised 

with a Wiener filter, giving a filtered image F(I). After transferring the coefficients back 
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to the spatial domain, the filtered image is subtracted from the original input image. In 14, 

the filtered image is obtained by a series of simple convolutions. Put simply, for each 

pixel, neighbouring data are used as an estimate for the pixel under consideration, often a 

very good indicator (Lambertian surfaces). Again, by subtracting the filtered image from 

the original image, the pattern P is obtained. For details, see the original publications. By 

subtracting the denoised image from the original image, we see which pixels have a 

higher (lower) output. This indicates which pixels are more (less) active. 

 In practice, we see other characteristics in the PRNU pattern as well. For example, 

as most digital cameras compress photographs for space-efficient storage, we see periodic 

patterns along the boundaries of blocks of pixels, as JPEG compression mostly works 

with small coding units of 8x8 pixels. This compression results in visual artifacts in the 

image that are inherited in the pattern P. Another source for periodic patterns is the 

following. Image sensors are monochrome devices, which means they are not able to 

sense colors. In order to give a photo its colors, a color filter array (CFA) is placed on top 

of the image sensor. A typical color filter consists of repeating patterns of red, green and 

blue pigments. As a result, each pixel only receives light that is transmitted by its 

overlaying pigment. In this way, the image to be created forms a mosaic where each pixel 

only contains information about its own overlaying color. To construct a full color image, 

where each pixel has a value for red, green and blue, the image needs to be demosaiced. 

For example, when a pixel has recorded the light intensity of the red color, the intensity 

for the green and blue color is calculated from its neighbours. Calculating the intensity in 

this way results in a periodic signal, as the color data is interpolated the same way for 
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each pixel. This results in visual artifacts in the PRNU pattern. These artifacts are not 

identifying characteristics, but instead belong to a certain class of cameras. For this 

reason elevated correlation values are observed between patterns extracted from unrelated 

images that originate from the same make and model of camera. The degree at which this 

occurs depends on the relative size of these artifacts with respect to the size of the PRNU.  

 At our institute, if the question arises whether a certain camera was used to make 

a certain image, and both the image and camera are available, the PRNU pattern Pq from 

the questioned image is extracted and compared with the PRNU pattern Pr extracted from 

a set of reference images from the camera. These reference images are in practice images 

of a grey surface in which each color channel is approximately uniformly illuminated, so 

that the PRNU pattern can be reliably obtained. The PRNU patterns are in fact three-

dimensional matrices, the first two coordinates fixing the location of the pixel and the 

third the color (red, green or blue). The similarity between patterns Pq and Pr, denoted as 

ρ(Pq, Pr), is calculated using a correlation measure, namely Pearson’s correlation 

coefficient: 
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are the usual Euclidian inner product (point-wise multiplication) and norm on the space 

of three-dimensional matrices. The higher the correlation value is, the stronger the 

support that there is a relationship between both patterns. However, because of the 

aforementioned reasons of class-characteristic periodicities, there is no universal 



threshold that can be used to conclude whether or not a certain camera is in fact the 

source of an image. 

 For this reason, a set of independent reference cameras is used with no relation to 

the questioned image. Ideally, the number of these independent reference cameras is 

large, but for practical reasons (they are costly, and taking reference images is time-

consuming) it will be limited. When the correlation value between a questioned image q 

and a questioned camera C is significantly higher than for other cameras, there is a strong 

indication about the questioned camera being the source camera, and we may try to 

express this indication in LR form. 

 We formalize the above in the LR framework as follows. We start by defining 

two mutually exclusive hypotheses, Hp and Hd: 

 Hp: the questioned image q was taken with camera C, 

 Hd: the questioned image q was taken with a camera of the same make and model, 

  but other than C. 

We could have taken Hd to imply that any other camera may have been used instead of C. 

As explained, cameras of the same type will tend to have a higher correlation values with 

the image than random cameras, so this procedure will tend to come up with conservative 

results. As a result, a subset of cameras of the same make and model as the suspect 

camera is used in order to produce the right reference data. To see how well this works, 

data was obtained or two different types of cameras. 

 

Data used 



As stated, two different types of cameras were used: a set of 10 low resolution Motorola 

V360 mobile phone cameras and a set of 9 Sony DSC-S500 cameras. 

 For each camera, from the set of reference cameras, a number of reference 

(‘flatfield’) images were taken, along with a number of ‘natural’ images, similar to the 

questioned image. For the mobile phone camera, we used N=106 natural images and 100 

reference images. For each Sony DSC-S500 camera, we used N=100 natural images and 

100 reference images. Ideally, the contents of the natural images are the same as of the 

questioned image, as each pixel has its own characteristic individual response, but this 

will generally not be feasible in practice. For each camera, the PRNU patterns extracted 

from the reference images were averaged to obtain a single reference PRNU pattern Ri, 

and for all individual natural images the PRNU pattern was extracted. For each of the 

cameras, the correlation of the reference pattern with the PRNU pattern of the natural 

images of the same and of different cameras (same brand and type) was determined, the 

correlation being denoted by v. The distributions of outcomes under both hypotheses can 

be plotted in histograms, and the probability density of both distributions statistically 

modeled, e.g. by a Generalized Gaussian or a logistic distribution. By dividing the 

probability density function of Hp at v by the probability density function of Hd at v will 

yield the LR. 

 For each of the two sets of cameras (of size n=10 and n=9), each of the cameras 

was treated in turn as a suspect camera, and LRs were determined for comparisons of 

patterns under Hp (a total of N×n values) and under Hd (a total of N×n×(n-1) values). 

Here n is the total number of cameras (either 10 or 9) and N the total number of natural 

images (either 106 or 100). The results are described below. 



 

Statistical testing methods used 

Statistical models for the data derived further on were determined using the Matlab 

distribution fitting tool ‘dfittool’. 

 In order to statistically test whether a set of observed scores has a good fit with 

any proposed statistical model, we will use the Kolmogorov-Smirnov and the Lilliefors 

test statistic, cf. 15. Results for tests are given by means of p-values. If a p-value is small 

this indicates that under the proposed model the findings were unlikely to appear. In this 

paper the model is rejected if p<0.05. 

 To graphically illustrate the data, we will use kernel density estimations, cf. 15 as 

well, with normal kernels and standard band widths as calculated by Matlab. 

 

Results 

 

We have a look at the results for the two cases described. We start by looking at the 

results for the mobile phone camera. 

 

Case 1: the mobile phone cameras 

In Figure 1 we plot the results for the mobile phone camera. In the first plot, an 

illustration is given of the observed correlations in the case of Hp and Hd. We will refer to 

outcomes under Hp as ‘matches’ and outcomes under Hd as ‘non-matches’. As one can 

see, there is a fair amount of overlap. The statistical models that were fitted are a 

generalized extreme value distribution for the ‘matching’ scores (the Kolmogorov-
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Smirnov test statistic gives a p-value of p=0.68), and a t location scale distribution for the 

‘non-matching’ scores (the Kolmogorov-Smirnov test statistic leads to p=0.06). Based on 

this, in the second plot, the LR is described as a function of the correlation. In the third 

plot, kernel density estimations are given for the observed LRs under both Hp and Hd. For 

ease of illustration, instead of LRs, log10(LR)s are given. 

 

 

 

Figure 1. Results for PRNU comparison for mobile phone cameras. In the first plot, 

kernel density estimations are depicted for ‘matching’ and ‘non-matching’ patterns. In 

the second plot, the LR is described as a function of the correlation. In the third plot, 



kernel density estimations are given for the observed LRs under both Hp and Hd. For ease 

of illustration, instead of LRs, log10(LR)s are given. 

 

In the second plot we see that up to a value 0.12, as the correlation value increases, it 

becomes more and more likely that the supposed camera was in fact used to make the 

questioned image and the LR is increasing. This makes sense. The decrease of the 

function after this value does not. This is a consequence of the statistical model we have 

adopted. Indeed, only 2% of the observed score for ‘matching’ patterns are over 0.12, and 

0% of the ‘non-matches’, so in this region it makes no sense to use our statistical models 

for the data anymore. 

 

Case 2: the Sony DSC-S500 cameras 

In Figures 2 and 3 we plot the results for the Sony DSC-S500 cameras. In subplot 1 of 

Figure 2, an illustration is given of the histograms of outcomes for the observed 

correlations in the case of Hp and Hd. One can see that there is much less overlap than for 

the mobile phone cameras. The statistical models that were fitted are a generalized 

extreme value distribution for the ‘matching’ scores (the Kolmogorov-Smirnov test 

statistic leads to p=0.70), and a normal distribution for the ‘non-matching’ scores (the 

Lilliefors test leads to p=0.28). Based on this, in the second subplot, the LR is described 

as a function of the correlation, on a log10 scale. 



  

Figure 2. Results for PRNU comparison for the Sony DSC-S500 cameras. In subplot 1, 

kernel density estimations are given for ‘matching’ and ‘non-matching’ patterns. In 

subplot 2, the LR is described as a function of the correlation. For ease of illustration, 

instead of LRs, log10(LR)s are given. 

 

In Figure 3, kernel density estimations are given for the observed log10(LR)s under both 

Hp and Hd. 

 

 



 

Figure 3. Kernel density estimations of log10(LR)s obtained for PRNU comparison for the 

Sony DSC-S500 cameras, both under Hp (subplot 1) and Hd (subplot 2). 

 

Note that in Figure 2, subplot 2, up to 0 the LR function is decreasing, which makes no 

sense, again as a consequence of the statistical models used. The reason for this is that the 

tail of the normal distribution decreases much more quickly than that of the generalized 

extreme value distribution. As a second remark, see Figure 3, subplot 1: note the high 

values of LR under Hp. These outcomes are caused by the model, not the data. Indeed 

what happens is that for almost every ‘matching’ score observed, we cannot safely 



estimate the probability density for ‘non-matching’ scores at that point, since the 

reference data does not reach it. The question is: which LRs are reliable here? 

 A possible way out is to use conservative estimates for the distribution of scores, 

e.g. stop at some quantile that is still considered dependable and make use of the density 

value over there for all comparison scores that are higher. In the current set-up this does 

not work well: if we stop at the 95% quantile, for the Sony cameras we obtain LRs that 

are <1 under Hp in 100% of the cases, instead of the values like 1050 that resulted from 

the calculations. Given the fact that the size of the reference sample is 7,200, higher 

quantiles might be dependable which would lift the LRs somewhat. 

 

Alternative approach 

A possibility which is more stable is the following. If discrimination of values is very 

good, we may split the reference data into two parts. The first part, consisting of say 100 

scores for ‘matching’ comparisons and 100 for ‘non-matching’, is used to come up with a 

threshold value for which we expect it separates the reference data of ‘matches’ and ‘non-

matches’ optimally. In Figure 2, a plot is presented of the distribution of correlation 

values for the set of 9 Sony DSC-S500 cameras. In this case, as can be seen in the upper 

plot of Figure 2, a threshold of (say) 0.003 visually separates the ‘matching’ and ‘non-

matching’ correlation values. The remaining reference data, 800 ‘matching’ and 7,100 

‘non-matching’ scores is used to estimate the probability of a comparison score to be over 

or under the threshold, given both hypotheses. If a new comparison is performed, we just 

evaluate whether the LR is over 0.003 or not. If the numbers of reference data are high 



this may work well. (Note that the reference data needs to be split up because the 

threshold value may not depend on the data used to determine the strength of evidence.) 

 We look at a numerical example: suppose we obtain a comparison score of 0.005 

and look for the LR of the fact that this outcome is >0.003. Indeed, then 
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where p1 is the probability for ‘matching’ scores to be >0.003, and p2 that for non-

’matching’ scores. In the reference data, all ‘matching’ scores were above 0.003, and all 

‘non-matching’ scores below. Now we concentrate on the ‘non-matching’ scores: here 

the sample of 7,100 comparisons has a total number of ‘successes’ (values >0.003) b=0. 

A priori, this number had a binomial distribution with parameters p2 and n=7,100, which 

is approximated well by a normal distribution with expected value np2 and standard 

deviation √(np2(1-p2)). As a consequence, a 95% confidence interval for p2 is given 

through: 

 |b-np2| ≤ 1.96 × √(np2(1-p2)). 

This leads to a quadratic equation in terms of p2, which leads to: 

 0 ≤ p2 ≤ 2

2

96.1
96.1

+n
≈ 5.4×10-4. 

In turn, the lower bound for the LR involved is approximately given by 1/(5.4×10-4) ≈ 

1,800. (Here p1 was approximated by 1: in fact, using similar arguments, we could have 

used 1-4.8×10-3 as an upper bound, which gives practically the same results.) Note that 

there is no good upper bound since we cannot prove that p2≠0. 

 We study the robustness of the above by applying the following procedure for 

1,000 times. From the 900 ‘matching’ and 7,200 ‘non-matching’ scores, we select two 

subsamples of size 100, and calculate the average of the averages of these subsamples. 



We use this number as the threshold value. Then we inspect whether any of the remaining 

800 ‘matching’ scores is under, or any of the remaining 7,200 ‘non-matching’ scores is 

over the threshold. In none of the 1,000 repetitions of this experiment this was the case. 

Hence we always obtain the same lower bound of 1,800 for the LR for a score over the 

threshold. This illustrates that in the case of the Sony cameras, the procedure is stable. 

 

Discussion 

In the paper, it was investigated how implementation of the LR framework under a 

Bayesian reasoning approach works out in the case of comparison of images and cameras 

based on PRNU patterns. We considered two typical case scenarios, the one with images 

of low quality, the other with images of high-quality. In both cases, it turns out to be well 

possible to obtain statistical distributions underlying the reference data for both 

‘matching’ and ‘non-matching’ comparisons. Based on these, LRs can be calculated. For 

the mobile phone cameras, the second plot of Figure 1 illustrates that here in the tail of 

the distributions problems will emerge: the LR decreases as a function of the correlation 

between PRNU patterns, which is nonsensical. For the Sony cameras, this point is even 

clearer. Again the LR function is not increasing on the whole range of correlations 

encountered. Moreover, LRs under Hp are absurdly high. The reason for this is that the 

statistical fit of the distribution for ‘non-matches’ is constantly evaluated in a range 

where there is no reference data. Clearly the numbers that are coming out cannot be 

trusted. The problem is that extrapolation takes place in the tail of the fit for correlation 

scores under Hd, which is bad statistical procedure. All in all, under these circumstances 



it is not possible to come up with reliable LRs, and the reason for this is that the 

correlation scores under both hypotheses are separated too well.  

 The issue of widely separated distributions, and the resulting unreliable LRs is not 

a problem that is unique for PRNU-based comparison: if the informative value of any 

forensic comparison (be it fingerprints, speech, glass particles, etcetera) is high, the 

problem emerges. Although this may be considered to be a problem of luxury, the 

question remains how to deal with it. The alternative of checking whether comparison 

scores are larger or smaller than some threshold value will yield LRs which will be 

smaller, but at least reliable. 


