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ABSTRACT:   Each digital camera has an intrinsic fingerprint that is unique to each camera. This device 

fingerprint can be extracted from an image, and can be compared to a reference device fingerprint to 

determine the device origin. The complexity of the filters proposed to accomplish this is increasing. In this 

note, we use a relatively simple algorithm to extract the sensor noise from images. It has the advantages of 

being easy to implement and parallelize, and working faster than the wavelet filter that is common for this 

application. In addition, we compare the performance with a simple median filter, and whether a previously 

proposed fingerprint enhancement technique improves results. Experiments are performed on 

approximately 7500 images originating from 69 cameras, and the results are compared with this often used 

wavelet filter. Despite the simplicity of the proposed method, the performance exceeds the common 

wavelet filter, and reduces the time needed for the extraction. 

 

KEWYORDS:  forensic science, camera identification, digital forensics, photo response non-uniformity, 

source verification, sensor forensics 
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Digital photography was adopted in a short time to replace its analog counterpart in the last two decades. 

Along with this transition came the easy and widespread usage of the internet, making it possible to share 

and copy these images without leaving behind any traces. In some situations, however, the question of the 

image source can be of paramount importance in a forensic context.  

An obvious example is whether an image was downloaded or actually produced by a suspect in a child 

pornography case. Another possibility is to test testimonies and confessions, e.g. whether a suspect was 

near a crime scene if photos or videos were found on his mobile phone or camera. As a final example, the 

question of the origin of a stolen camera found at a suspect’s residence, for example in a violent robbery, 

may be solved if the owner has some reference material available (e.g. on his computer). 

There has been a lot of effort in the forensics community to solve the question of camera identification 

based on the images a camera produces. Roughly, there are two approaches. The first is mostly a camera 

classification scheme based on statistical information from the images. This approach (e.g. see (1) and the 

references therein) uses Support Vector Machines (SVMs) to classify images based on a large number of 

features. Examples of these features are Binary Similarity Measures in which tell-tale patterns from the 

bitplanes are used as a characteristic of a camera brand/model, Image Quality Measures in which features 

such as image sharpness and other visual differences are used, Higher-Order Wavelet Statistics in which 

characteristics about the noise are exploited, demosaicking artifacts in which the Color Filter Array 

interpolation algorithm is used as a distinctive characteristic, and more (1). Although the performance can 

be quite good it has the disadvantage that the SVM needs to be trained properly, which can take quite a lot 

of time as feature extraction for high resolution images is computationally expensive, especially when the 

amount of features is large. The potential advantage is that spatially transformed images may still be 

identified (1) - if the SVM is trained properly. In (2), an alternative approach is presented. As image 

sensors are monochrome devices they cannot differentiate between different colors. To produce a color 

output, a Color Filter Array is placed on top of the sensor. With this addition, each pixel absorbs light with 

a wavelength range corresponding to either the red, green or blue color (in the common Bayer filter array). 

To produce a full color image, an interpolation step is needed. Different camera brands and models often 

use different interpolation algorithms to accomplish this. In this way it is possible to perform camera 
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classification by estimating the interpolation algorithm that has been used inside the camera. Likewise, in 

(3), Singular Value Decomposition is used to detect the linear dependency in rows/columns due to 

interpolation artifacts.  

The second approach does not rely on these statistically significant deviations, but instead uses 

characteristics that individualize each sensor. When digital cameras started to gain popularity, CCD and 

CMOS sensors contained defects (dead or hot pixels). These defects in turn created a unique pattern that 

could help linking photographs and their sensors (4). Due to the possible absence of these defects in 

modern sensors, the forensics community started looking at the individual deviation of each pixel (5). This 

is the Photo Response Non-Uniformity (PRNU), and is based on the characteristic fingerprint the camera 

unintentionally leaves behind in each image it produces. The method of operation relies on the fact that 

each pixel has a slightly different response to the same amount of light, creating a characteristic pattern of 

deviations. The presence of this fingerprint depends among others on the intensity, as it is multiplicative. 

Images that contain high frequency textures or large dark areas may be difficult to identify. This is due to 

the information loss resulting from the (mostly JPEG) compressed images in high frequency textures and 

the absence of the pattern in dark areas. In general, however, this pattern is quite robust against 

compression, and under certain conditions even works for videos from YouTube (6). However, spatial 

transformations desynchronize the PRNU pattern (e.g. cropping, rotation or scaling) and make 

identification harder or near impossible. When images are cropped and/or scaled, identification is still 

possible as was shown in (7).  

The techniques used to denoise the images are getting more and more advanced (see e.g. (8)), and with this 

the computational complexity is increasing. Instead of using the most advanced method to denoise the 

images, we found an efficient multiscale algorithm (9) that is very easy to implement.  

This paper is organized as follows. In the next section we will expand on a few general things about the 

method of identification. In paragraph III we will briefly explain the algorithm used to extract the PRNU 

pattern from the images. Subsequently, after explaining the experimental conditions in paragraph IV, we 

will use this algorithm to measure the performance in paragraph V. After a discussion in paragraph VI, the 

paper is concluded in paragraph VII. 
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Methods 

The origin of the PRNU lies in construction and device non-idealities. Specifically, this means that when 

all pixels are equally illuminated, the output from these pixels will be slightly different. These variations 

are due to non-uniform sizes of the active area of the pixels, or non-uniform potential wells resulting in a 

different spectral response. Hence, some pixels may collect more photons due to a larger size of the photo 

transistor, or absorb more long-wavelength photons as its potential well may be deeper.  

There are two opposing trends making and breaking this scheme: on the one hand, due to improving 

manufacturing standards, the presence of the PRNU may decrease as technology advances. On the other 

hand, the resolution increases as well, resulting in smaller pixels and relatively larger deviations. 

As put forth in the introduction, the camera identification scheme relies on the extraction of the 

characteristic digital fingerprint from photos. Although this pattern is often imperceptible from the image 

itself, it is possible to extract it from the image with advanced filters. In order to conclude that a certain 

image was made with a certain camera, we need to compare the pattern from the questioned image with a 

reference pattern of the suspected camera. In general, extracting the pattern from an image is easiest when 

the image contains no textures or edges. Furthermore, as the PRNU is multiplicative (its effect increases 

when the illumination increases), it is preferred to use images that are reasonably illuminated (not 

saturated). These kinds of images are called flatfield or reference images, and can be made by 

photographing out-of-focus bright skies or flat surfaces such as desks. To calculate the reference pattern of 

a camera, a large amount (we used 50) of these images are made, after which the patterns from each single 

image are extracted and averaged. By averaging these individual patterns, temporary fluctuations (e.g. 

photon shot noise) are averaged out, thus obtaining the reference pattern. In addition to flatfield or 

reference images, there are regular images (typically including actual scene content) to which we refer to as 

‘natural’ images. Now, the fingerprint from a questioned image of unknown origin is compared with the 

reference pattern, often simply by calculating Pearson’s correlation. A high correlation suggests a (linear) 

relationship between these two seemingly random patterns. This method works reliably even when large 

amounts of images and cameras are used. In (10), the results of a large scale experiment (over one million 

images, spanning almost 7000 different cameras) are reported with very low false rejection and false 

acceptance rates. 
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In actual casework, we prefer to use a large number (at least 10) of reference cameras of the same 

make/model to exclude the possibility of matching based on class specific characteristics. Specifically, it is 

possible that class characteristic patterns (e.g. from CFA interpolation, JPEG compression artifacts) may be 

present in the extracted pattern (11). These characteristic patterns may be specific to a class of cameras, e.g. 

the brand and/or model. Hence, in these cases, an elevated correlation value does not signify identification, 

but merely shows a different relationship between the two patterns exists. By using multiple reference 

cameras, we can exclude the possibility of matching based on just these characteristics. These 

considerations are especially important with low quality (high compression) images and/or videos.  

 

Algorithm 

We will now briefly explain the algorithm to extract the PRNU pattern from images. For a more in-depth 

explanation we refer to the original publications (9)(12). As put forth in the previous paragraph, extracting 

the sensor noise P from the image is done by simply subtracting a denoised (filtered) version F(I) from the 

original image I: 

)(IFIP −= . (1) 

An image may consist of various homogeneous and inhomogeneous areas. Intuitively speaking, there may 

be continuous (smooth) areas of approximately the same intensity, and discontinuous areas (textures, 

edges) with variable intensities. In this framework, we can understand the anisotropic diffusion algorithm 

(9) by first considering the continuity equation, in which we explicitly assume that the intensity I(x,y,t) is a 

conserved quantity: 
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in which J(x,y,t) denotes the flux of the image intensity, and the whole right hand side of the equation 

denotes the divergence of the flux. The t-variable in I(x,y,t) signifies the multiscale approach; each t 

signifies a different scale. Hence, this equation states that the image intensity is simply redistributed in the 

image, and the rate at which this happens equals the negative divergence of the flux. In other words, there 

is a redistribution of the pixel values in close proximity of each other.  

The flux, in turn, can be described by: 
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This states that the high image intensity values ‘flow’ to lower intensity values, depending on the gradient 

of the image, and the diffusion coefficient c. Combining these two equations we find the anisotropic 

diffusion equation (9): 
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Depending on the (local) diffusion coefficient c, the image is denoised. If c(x,y,t)=1 ∀ (x,y), then we can 

see that 
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is a valid solution; this denotes isotropic diffusion. However, isotropic diffusion results in the blurring of 

edges and textures which we want to avoid because this will lead to image residue in the PRNU pattern. 

Therefore, optimizing the denoising comes down to finding suitable diffusion coefficients. The authors (9) 

propose to use the image gradient as a parameter to control the diffusion (see below). This gives rise to the 

anisotropic diffusion (a different diffusion parameter in each direction).  

Perona and Malik (9) chose to use the four nearest neighbors, and this was later extended to the eight 

nearest neighbors in (12). 

Using the difference quotients as an approximation of the derivatives (4), we find that (9) 
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where Δ denotes nearest neighbors differences. For example, NIΔ  denotes the difference between the 

current pixel and the pixel above it (‘North’), and Nc  denotes the diffusion parameter for this direction. 

Intuitively, when the image I is smooth, the diffusion parameter should be close to 1: this approximates 

isotropic diffusion (‘Gaussian blurring’). On the other hand, when the image contains textures the diffusion 

parameter will be smaller to prevent edge distortion at boundaries. After the intensity values have been 

redistributed, the image is adjusted to reflect the new intensities: 
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where λ is the integration constant (0<=λ<=1/3 for four neighbors). To obtain the denoised image at a 

certain scale t, the image at scale t-1 is denoised. The first scale can be obtained by denoising the original 

image (scale 0). Finally, a small λ gives a better approximation of the original equation (4), but we will 

need more iterations to denoise the image.  

Adding the four diagonal neighbors results in  
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with 0<=λ<=1/7 (11). Note the factor ½ due to the larger distance to the diagonal pixel. Due to this larger 

distance, this pixel should have less influence on the pixel we are considering. Since we are applying the 

second derivative this gives a factor of ½. 

The NIΔ term can be obtained from a simple convolution: 
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and likewise for the other directions.  

Finally, it is necessary to know where the diffusion needs to occur and where not; i.e. we need to have an 

edge estimate to obtain the diffusion parameter. Perona and Malik use the gradient of the image as the 

diffusion parameter. A small gradient occurs where the area is homogeneous, which is where we want the 

diffusion (hence a large diffusion parameter) to occur and v.v. They propose two different diffusion 

functions based on the gradient: 
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The value for K is determined at each iteration. First, the gradient of the whole image at the previous scale 

is calculated (at the first scale, the original image is taken). After taking the absolute value of this gradient, 

the histogram is calculated, and the value below which 90% of the intensity values occur is denoted as K. 

After a set number of iterations, the denoised image F(I) is obtained.  
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After the filtered image F(I) has been calculated, the pattern is obtained by subtracting this filtered image 

from the original image (1). As rightfully noted in (11), artifacts in the pattern exist due to (class) 

characteristic CFA interpolation and JPEG compression. These characteristic artifacts result in a similarity 

between two otherwise unrelated patterns. We follow (11) by suppressing these artifacts by subsequently 

subtracting the column and row averages from the obtained pattern.  

Although it may look complicated, this algorithm is very easy to implement. In the appendix, pseudo-code 

can be found. The convolutions are actually simple subtractions, and the other calculations are all done 

point-wise, which means this algorithm is O(N). Finally, this approach makes it trivial to implement the 

algorithm in parallel to take advantage of multi-core processing (e.g. each convolution executed in a 

separate thread).  

 

Experimental Settings 

The algorithm was implemented in Matlab 2009b but no explicit multithreading was implemented. Due to 

its simplicity and the use of standard functions, the amount of code is limited to approximately 50 lines. To 

compare the performance of the wavelet algorithm (5) we did the same for this algorithm. The Wavelab850 

toolbox (12) was used for the latter algorithm. The improvements in (11) to reduce periodic artifacts, 

namely zero-meaning and wiener-filtering, were also implemented. In (5) it was suggested that non-dyadic 

images could be processed by blocks. The advantage is that the memory needed for calculating the PRNU 

pattern remains within boundaries. On the other hand, processing non-overlapping blocks results in 

boundary effects. Instead we adjusted the code from Wavelab850 to allow for non-square non-dyadic 

images. This significantly reduces the overhead from overlapping blocks. The downside is that it uses more 

memory than when (smaller) individual blocks are processed. For comparison, we used the Daubechies 

wavelet as well as the Coiflet wavelet, and varied the denoising parameter σ =1-4. It would be 

advantageous to estimate the denoising parameter from the image. Indeed, when an image is corrupted with 

White Gaussian Noise, this can be done easily be transforming the image to the wavelet domain, and 

subsequently calculate the median in the highest level subband (14).However, this does not work reliably in 

normal (uncorrupted) images, and hence we use a fixed sigma. 
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For the anisotropic diffusion algorithm, we chose the first diffusion function due to its slightly better 

performance in our tests. The number of scales was set to three, and λ was fixed to 1/7. We tested 4 as well 

as 8 local neighbours.  

Finally, we tested whether the work presented in (15) to reduce the image residue in the PRNU pattern 

resulted in a better performance, for both the wavelet method as well as the presented method. This is 

accomplished by attenuating pixels that show a very strong deviation in the PRNU pattern, as these pixels 

are likely to originate from image content. The larger the magnitude of the pixel in the PRNU pattern, the 

more it is attenuated. 

The experiments were performed on an Intel Xeon E5410 2.3 GHz with 4GB of RAM. We used 69 

cameras for the comparison of three different brands comprising seven different models and resolutions, as 

can be seen in Table 1. In this table, the amount of natural images is also presented. The amount of 

reference images used for the calculation of the reference patterns was 50 for each camera used. 

 

For each camera, a number of natural images were made, ranging from 50 to 150 per camera. The images 

were made inside and outside the office, with a wide range of textures, details and illuminations (saturation 

was frequently present). Images were captured in automatic setting, with digital zoom turned off.  

To judge whether an image originates from a certain camera, the correlation coefficient is used. It is 

defined in the usual way: 

||||||||
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−⋅−
=ρ

, (12) 

where n is the PRNU pattern of the natural image, R is the reference pattern, and the bar above n and R 

denotes the average. 

 

Results 

A total of 7502 natural images were used to assess the performance of both methods. For each model and 

method, we experimentally determined the equal error rate (EER), defined as the point where the false 

acceptance rate and false rejection rate are equal. 
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In Table 2 the equal error rates of the wavelet method (Daubechies wavelet) is presented for σ=1-4, for 

each camera. Using a Coiflet wavelet did not improve the result (on average, approximately 50% higher 

equal error rates). Based on these results it was decided to use σ= 2 (Daubechies) in the following 

comparisons. 

 

In Table 3 the results are presented for both the wavelet method as well as the proposed method (columns 1 

and 2). For the Sony DSC-S930 we see a dramatic rise of the equal error-rate. Upon inspection, we see that 

the distribution of the correlation values for the mismatching pairs (the correlation between an image and a 

reference pattern from different cameras), has dramatically shifted to higher values. This means that the 

patterns still contain class-specific characteristics of the model/brand camera. 

Changing the number of scales/iterations did not significantly improve the results. When random images 

were inspected, we realized that most surfaces are locally approximately smooth or even uniform in their 

intensity, due to the Lambertian reflectance property. Specifically, this means that a surface has the same 

brightness irrespective of the angle of view (isotropic luminance). Therefore, it was suggested that applying 

a median filter would do the initial denoising, after which the anisotropic diffusion was again applied. This 

median filter should help to reduce the amount of (small) impulse noise. It works by sliding a 3x3 window 

over each pixel, and substituting the center pixel value by the median of the sorted 9 values inside the 

window. Note that this median filter was only applied to the natural images. 

Results for this combined approach are presented in the last column of Table 3, in which we see the 

improved sensitivity of the method. As the median filter only performs local operations, it only results in a 

time penalty of approximately 10% with respect to the proposed algorithm. Interestingly, using only 4 local 

neighbors instead of 8 resulted in the best performance.  

When this median filter was applied for the wavelet method results did not improve, but gave on average a 

slight performance penalty. Finally, we also attempted to use the median filter for the PRNU extraction. 

The performance was much worse than the other two filters, as can be seen in Table 4. 

Reducing the image residue as presented in (15) only improved the results very slightly for both the 

wavelet method as well as the proposed method. As noted in (15), this is expected, as the performance gain 

is mainly beneficial for low resolution images. This shows that both methods are already sufficiently 
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capable of discriminating between image features and noise. Interestingly, when the method was applied to 

the median filter, results improved dramatically, as seen in Table 4.  

 

As a final assessment of the discriminative ability of the method, we also calculated the correlation between 

the PRNU patterns from each natural image and the reference PRNU pattern from each of the 69 cameras. 

To circumvent the problem of differing resolutions from the cameras and to speed up the extraction, we 

limited the pattern size to 1536x1536. In this way, 7502·68≈5.1·105 mismatching correlations and 7502 

matching correlations were calculated. This resulted in an EER of 2.81% for the wavelet method, and an 

EER of 0.50% for the proposed method (including the median filter). The results from this experiment are 

summarized in Fig. 1. In this figure we present the detection error trade-off (DET) curve, a plot (more 

common in biometrics) representing the false positive rate vs. the false negative rate on log-log scales. This 

allows a better distinguishing between the relative errors than the common Receiver Operating 

Characteristic (ROC) curve. From this figure we conclude that the proposed method is better suited for 

camera identification for all but the highest false acceptance rates. Specifically, at a False Acceptance Rate 

(FAR) of 10-3 the False Rejection Rate (FRR) for the proposed method is 1.4·10-2, while the FRR is 0.27 

for the wavelet method. At a FAR of 10-2 the FRRs are 3.33·10-3 and 0.135, respectively. 

A possible reason for the better performance of the proposed method is that the denoising only takes place 

in the immediate vicinity of each pixel. In contrast, for the wavelet method, the denoising is done in the 

wavelet domain in four levels. Especially in the larger/coarser scales, the denoising may quickly be too 

abrupt and/or cover a region that is too large.  

 

Discussion 

We inspected 40 images (≈0.5%) which were responsible for the lowest correlations in the match 

distribution, for both methods. More than 50% of these images were problematic for both methods. Upon 

inspection, we found that there were different sources of these problems: highly detailed textures (sand, 

gravel, leaves, twigs of trees, fabrics), large dark or saturated areas (in general, images with large contrasts 

such as trees in snow), and elevated noise (higher ISO values).  



 13 

In the histogram it was observed that the distribution of the correlation values for non-matching pairs 

(between the PRNU pattern from a natural image and a non-matching reference pattern) is much narrower 

for the proposed method. On the other hand, the matching distributions are comparable, with the 

distribution for the proposed method skewed to the left. 

It was suggested in (5) that the correlation values for the mismatching pairs for the wavelet method could 

be described be a generalized Gaussian distribution. However, we found that the logistic distribution better 

described the distribution of the proposed method due to its slightly wider tails: 
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where f denotes the probability density function. In this formula, µ denotes the location and ω denotes the 

scale of the density function. These parameters can be estimated by nonlinear regression. The best fit, 

however, comes from a nonparametric model (e.g. kernel density estimation).  

On the other hand, the correlation values for the matching pairs could be best described by a different type 

of distribution, namely by the lognormal distribution: 
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as the data was strongly skewed to the left. In this formula, µ and σ denote the mean and standard deviation 

of ln(x), respectively. In Fig. 2 the probability density function is presented for these suggested 

distributions. Finally, in Fig. 3 the histogram of correlation values is shown for the Wavelet method. It can 

be seen that the distribution is narrower for the proposed method, resulting in the better performance (lower 

EER). Upon inspection we found that the wider tails in the wavelet distribution are almost exclusively due 

to its bad performance on the Sony DSC-S930. Without this camera, the EER would be approximately 

1.3%.  

 

Conclusion 

We have presented an alternative technique that can be used for the efficient extraction of PRNU patterns 

from images. The advantages are the simplicity of implementation, the reduced computation time 

(approximately 30% reduction) and the improved performance.  
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In the near future, this approach will be implemented in our open source program for camera comparison, 

NFI PRNUCompare (16).  
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Appendix 

 

Step 1 Set the maximum scale n (default: 3), and which diffusion function (eq. 11) should be used. Set 

λ=1/3, and define the matrices g needed for convolution (eight in total): 
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Read the input image I. Apply a median filter to this image. 

Step 2 Set It =I, It2 =I, k=1 

repeat n times: 

Calculate the convolution of It with the first matrix g, and store this in IΔ . Subsequently, calculate the 

value of K such that 90% of the intensity values in the gradient image IΔ occur below this value. Calculate 

c (eq. 11), depending on the diffusion function chosen. Set It2 = It2 + λc IΔ . 

Clear variables I∇  and c. Repeat for the other 3 matrices. Set It = It2 and k=k+1 

Step 3 Subtract the denoised image from the input image, and zero-mean (9) the result M, as follows. 

First, subtract the column averages of M from M, giving M’. Then, subtract the row averages of M’ from 

M’. This is the PRNU pattern. 
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TABLE 1—Cameras used. 
 

Brand Model Resolution (MP) Cameras Images 

Samsung Digimax S500 2560x1920 (5) 10 998 
Samsung Digimax L70 3072x2304 (7) 10 1060 
Canon PowerShot A430 2272x1704 (4) 10 1050 
Canon PowerShot A630 3264x2448 (8) 10 500 
Sony CyberShot DSC-S500 2816x2112 (6) 9 900 
Sony CyberShot DSC-S800 3264x2448 (8) 10 1494 
Sony CyberShot DSC-S930 3648x2736 (10) 10 1500 

Overview of the amount of cameras used, and their specifications.
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TABLE 2—Performance measures for the Wavelet method. 
 

Brand Model σ=1 σ=2 σ=3 σ=4 
Samsung Digimax S500 0.50 0.50 0.40 0.57 
Samsung Digimax L70 0.00 0.00 0.00 0.00 
Canon PowerShot A430 1.14 0.86 0.76 0.57 
Canon PowerShot A630 0.00 0.00 0.00 0.00 
Sony CyberShot DSC-S500 0.00 0.33 1.22 1.89 
Sony CyberShot DSC-S800 0.47 0.47 0.40 0.40 
Sony CyberShot DSC-S930 10.8 4.93 4.73 4.23 
 Weighted Average 2.48 1.30 1.33 1.31 

Equal Error Rates (percentage) for the wavelet method (Daubechies wavelet) for different denoising 
parameters. From this it was concluded that σ=2 gave the best performance (lowest number of errors).
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TABLE 3—Performance measures for both methods. 
 

Brand Model EERw EERad EERad’ 
Samsung Digimax S500 0.50 % 0.20 % 0.20 % 
Samsung Digimax L70 0.00 % 0.00 % 0.00 % 
Canon PowerShot A430 0.86 % 0.42 % 0.09 % 
Canon PowerShot A630 0.00 % 0.00 % 0.00 % 
Sony CyberShot DSC-S500 0.33 % 0.00 % 0.00 % 
Sony CyberShot DSC-S800 0.47 % 0.50 % 0.47 % 
Sony CyberShot DSC-S930 4.93 % 11.0 % 0.60 % 
 Weighted Average 1.31% 2.38% 0.25% 

EERw denotes the Equal Error Rate for the wavelet method, and EERad denotes the Equal Error Rate for the 
Anisotropic Diffusion method. Finally, EERad' denotes the Equal Error Rate for the adjusted method, i.e. 
the Anisotropic Diffusion method followed after the initial median filter (see text).
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TABLE 4—Equal Error Rate for the Median filter with and without reducing the image residue [12]. 
 

Brand Model EERm EERm’ 
Samsung Digimax S500 12.3% 0.86% 
Samsung Digimax L70 41.6% 35.4% 
Canon PowerShot A430 12.0% 0% 
Canon PowerShot A630 50.9% 0.89% 
Sony CyberShot DSC-S500 38.0% 0.09% 
Sony CyberShot DSC-S800 41.0% 1.50% 
Sony CyberShot DSC-S930 35.6% 1.13% 
 Weighted Average 32.4% 5.71% 

EERm denotes the Equal Error Rate for extracting the PRNU with the Median filter, and EERm’ denotes the 
Equal Error Rate for when the image residue reduction is applied to the Median filter. 


